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Particle Size Distributions during Diffusion Controlled Growth and Coarsening 

 

Oleg N. Senkov 
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ABSTRACT 

Theoretical analysis of particle growth and coarsening conducted in the present work, which 

includes stochastic flux of a solute inside/from the growing particles, predicts normal distribution 

of the particle sizes, independent on the particle volume fraction. This result agrees well with the 

numerous experimental data and it solves a mysterious problem related with a non-symmetrical 

size distribution in earlier Lifshitz-Slyozov-Wagner theory.  

 

INTRODUCTION 

Growth and coarsening of second phase particles in a supersaturated solution are important parts 

of phase transformations which tune various physical, chemical and mechanical properties of 

materials. These transformation processes occur when the nucleation stage of the second phase 

particles has completed and further decrease in the free energy of the system is mainly due to a 

decrease in the total interfacial energy. The particle growth originates from supersaturation, 

which is still present in the system after completion of the nucleation stage, and from the 

concentration gradients around the particles of different sizes caused by the capillary effect (the 

Gibbs-Thomson equation), which result in preferential growth of larger particles and shrinkage 

of smaller particles and in a continuous increase in the particle average size [1,2]. The major 

advance for the theoretical description of this process was made by Lifshitz, Slyozov and 

Wagner (so called LSW theory) [3,4]. This theory describes very well evolution of averaged 

growth parameters, such as the average radius, r , and the number density of the particles, , 

with time t. For example, for the diffusion controlled growth process, the LSW theory predicts 

the following behavior:  

N

r 3
 - 3

0r  = K t          (1) LSW 

1−N  -  = (4π/3f1
0
−N V) KLSW  t         (2) 
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where 0r  and  are the average radius and the number density of particles at time t = 0, f0N V is 

the particle volume fraction and KLSW is the rate constant, which is given by: 

KLSW = 
RT

cDVm

9
8 ∞γ

          (3) 

In Equation (3), γ is the particle-matrix interface energy, D is the diffusion coefficient, Vm is the 

molar volume of the second phase and  is the equilibrium saturated concentration of the 

alloying element in the matrix at the temperature T, and R is the gas constant. Many experimental 

results on the particle growth and coarsening indeed follow these relationships. However, the 

LSW theory leads to a highly asymmetric particle size distribution (PSD): 
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 at r < 1.5 and ΦLSW = 0 at ρ > 1.5  (4) 

with a sharp cutoff near the particle radius r = 1.5 r , which virtually does not agree with any 

experimentally reported particle size distributions [2,5]. The reported distributions are generally 

broader and more symmetric than the LSW prediction (Figure 1).  

A major problem with the LSW theory is believed [1,2] to be due to using the mean field 

approximation for the kinetic equation. This approximation assumes that the growth of a particle 

does not depend on diffusional interactions between nearest particles and it does not take into 

account the effect of the volume fraction of particles on the rate of growth of these particles. 

After taking into account the volume fraction of the particles and their soft interactions, modified 

LSW theories [6,7,8,9, see also ref. 2 for review] made the rate constant in Equation (1) 

dependent on the particle volume fraction and improved PSDs by making them broader and more 

symmetric. However, these modified PSDs become near symmetrical only at high particle 

volume fractions (fV > 0.1) [2]. The fact that experimental PSDs are also symmetric at very low 

fV may indicate that some other quantity or condition of the system, which has not been taken 

into account in the particle growth theories, is responsible for the near-symmetric distribution. In 

this paper we will show that the missed link between experimental and theoretical PSDs was 

stochastic solute diffusion that was not taken into account in those theories. To derive the PSD 

for the growth and coarsening process, we use a classic approach developed by Einstein more 

than 100 years ago when he solved the problem of Brownian motion [10]. 
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ANALYSIS 

Here we consider diffusion-controlled growth and coarsening of second phase spherical particles 

in a supersaturated solution, although similar approach can also be applied to the reaction-limited 

growth. The particles are distributed by theirs sizes (radii) and their number density is N, which 

are time dependent. The initial concentration of the solute element in the solution is co, current 

concentration is c, and its concentration in particles is assumed to be constant and equal cp. In 

general case, growth of these particles is due to (a) the diffusion current of solute across the 

particle/matrix interface caused by the solute concentration gradients near the particles and (b) 

stochastic diffusion of solute across the interface through the Brownian motion. The first process 

was well described in the previous theories, while the second process was ignored. If this 

stochastic process is taken into account, the diffusion current, J, of solute across the 

particle/matrix interface per unit area and the rate of particle growth, dr/dt, are given: 

 

J = D
rRdR

dc

=

 + g(r,t)ξ(t)         (5) 
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Here R is the distance from the center of a particle of radius r, γ is matrix/particle interface 

energy, Ω is the particle atomic (or molar) volume, rc is a critical radius, given by a linearized 

Gibbs-Thompson equation, ⎟⎟
⎠

⎞
⎜⎜
⎝
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cc
c

γ21 , at which a particle of radius rc is in equilibrium 

with the solution of concentration c(t), c∞ is the equilibrium solute concentration (at t→∞), t is 

time, k is the Boltzmann constant (or universal gas constant), T is the absolute temperature, 

g(r,t)ξ is a Langevin (stochastic) flux, and ξ is the rapidly fluctuating random term, which has 

the following properties [11,12]: 

 

<ξ(t)> = 0 and <ξ(t)ξ(t’)> = δ(t-t’)        (7) 
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Conditions (7) indicate that the average stochastic flux is equal zero, while its correlation 

function is non-zero and all the fluctuations at different times are independent. In equation (7),  

<  > means the mean value and δ is a delta function. Because of the stochastic nature of g(r,t)ξ(t), 

this value should not affect the time dependences of the average values of radius, number density 

and volume fraction of the growing particles. However, the presence of the stochastic flux will 

change the particle size distribution, as it is shown below. 

In the presence of the diffusion current, Equation (5), the radius r of an individual particle during 

a very short period of time, dτ, will increase by the amount of Δ, which can be defined from 

Equation (6) as:  

τ
γ d
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where W(t) =  is the Wiener process, which, in Ito calculus for stochastic processes, has 

the following properties: dτdW(t) = 0 and [dW(t)]

∫
t

dtt
0

)(ξ

2 = dτ [12]. For each particle, Δ has a different 

(positive or negative) value and the number of the particles, dN, which radius escalations are 

between Δ and Δ+dΔ, is given by 

dN = Nφ(Δ)dΔ           (9) 

where the function φ(Δ) is only different from zero for very small values of Δ and satisfies the 

condition . If only stochastic flux, g(r,t)ξ, were present, then φ(Δ) = φ(-Δ). 

However, the presence of a directional flux due to the concentration gradient (Equation 5) is the 

main contributor to the particle growth and, therefore, φ(Δ) ≠ φ(-Δ).  

∫
∞

∞−

=ΔΔ 1)( dφ

We now define a distribution function Φ(r,t) as a number of particles per unit volume of radius r 

at time t. Equation (9) allows us to determine the distribution of particles at time t + dτ from the 

distribution at time t. Indeed, the number of particles at time t + dτ that have radii between r and 

r + dr is: 

Φ(r,t+dτ)dr = dr        (10) ∫
∞

∞−

ΔΔΔ−Φ dtr )(),( φ

Since dτ and Δ are very small, we can set Taylor series: 
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Φ(r,t+τ) = Φ(r,t) + (dτ)
t
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We left the third term in Equation (10) because Δ contains the Wiener process (see Equation 8) 

and, therefore, Δ2 = (g/cp)2(dτ). We can use Equation 12 under the integral, because only small 

values of Δ contribute to Equation 10: 

Φ(r,t)+(dτ)
t

tr
∂

Φ∂ ),( =Φ(r,t) -∫
∞

∞−

ΔΔ d)(φ
r

tr
∂

Φ∂ ),(
∫
∞

∞−

ΔΔΔ d)(φ + 2

2 ),(
2
1

r
tr

∂
Φ∂

∫
∞

∞−

ΔΔΔ d)(2φ  (13) 

Taking into account that  and setting ∫
∞

∞−

=ΔΔ 1)( dφ

dt
rdd

dd
=ΔΔΔ∫

∞

∞−
→

)(1lim
0

φ
ττ

  and  
dt

dd
dd

2
2

0
)(1lim σφ

ττ
=ΔΔΔ∫

∞

∞−
→

    (14) 

where 
dt
rd  is the average particle growth rate and σ 2 is the size distribution variance, we obtain 

the differential equation for the PSD function Φ(r,t): 
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This equation has solution: 
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where A is a normalizing parameter calculated under the condition that  = N(t).  ∫
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The values r  and σ in Equation (16) can now be correlated with <r> and <r2>: 
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Therefore, with a very good approximation, r  ≈ <r> and  ≈ <r2σ 2> - 2r .  

 

To compare growth/coarsening behavior in different systems and/or at different conditions, a 

normalized particle size, ρ = r/ r , is generally used. For this quantity, the PSD function 

(Equation 16) is modified to: 
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Figure 1 shows experimental particle size distributions for a number of alloy systems. These 

experimental data were collected in ref. [5] and are shown in the figure as open circles. The 

Llifshitz-Slyozov distribution function is shown in Figure 1 as a dotted line. It is highly non-

symmetric, it does not predict particles with sizes larger than 1.5 r  and it does not fit well the 

experimental data. At the same time, the normal distribution function describes the experimental 

data rather well and it has flexibility to change the PDS width and height by assigning different 

σ/ r  ratios. 

Figure 2 shows experimental particle size distribution for Sn particles after coarsening for 40 

hours in a Pb-Sn liquid [13]. Theoretical PSDs derived from different modern theories of the 

particle coarsening are also shown in this figure. These PSDs are non-symmetrical and their 

agreement with the experimental PSD is rather speculative. The blue dashed line is the normal 

distribution given by Equation (17) with σ/ r  = 0.4, which agrees with the experimental data 

very well. There is a number of other examples showing experimental PSDs developed during 

particle growth and coarsening to be described by the normal distribution function 

[14,15,16,17,18,19,20,21], in agreement with our analysis. 

In conclusion, our theoretical analysis of particle growth and coarsening, which includes 

stochastic flux, predicts normal distribution of the particle sizes, independent on the particle 

volume fraction (see Equations 16 and/or 17). This result agrees well with the numerous 

experimental data and it solves a mysterious problem related with a non-symmetrical size 
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distribution in earlier LSW approach. As we can see from the present analysis, taking into 

account a stochastic process of solute diffusion inside/from the particles adds an additional 

(diffusion) term in the differential Equation (15) for the PSD function. This stochastic process 

was ignored in the previous LSW theories, which led to an artificial requirement that the LSW 

PSD function and all its derivatives should go to zero above some finite value of the particle 

size; otherwise the integral of the LSW distribution function would be logarithmically divergent 

[1,2,3]. 
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Figure 1. Experimental size distributions of growing particles in different alloy systems (shown 

as open circles and taken from Figure 1 of ref. [5]), Lifshitz and Slyozov distribution (dotted 

line) [3] and normal distributions (solid lines, Equation 17) at σ/<r> = 0.2 (blue line), 0.28 (black 

line), and 0.4 (red line). 
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Figure 2. Experimental (dark solid line) and theoretical (other gray lines) particle size 

distributions for Sn particles by Snyder et al. [13]. The theoretical PSDs indicated in the legend 

are from modified LSW theories and the blue line 
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